Shri Shankaracharya Institute of Professional Management & Technology

Class Test-I Session-July-Dec.2021 Month-November

Sem-3rd Branch-CIVI/IT/ETC/MECH.

Subject-Mathematics III Code-B000311(014)

Time Allowed: 2 hrs Max Marks: 40

Note: -	Part A is compulsory. Attempt any two part	from R.C and D

Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
	Part 1			
Α.	Solve $z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$	[4]	Applying	CO2
В.	Solve the following equation by method of separation of variables $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, given that $u = 3e^{-y} - e^{-5y}$, $x = 0$ when	[8]	Applying	CO2
C.	Solve $4\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 16\log(x + 2y)$	[8]	Applying	CO2
D.	Solve $px(z-2y^{2})+qy(z-y^{2}-2x^{3})=z(z-y^{2}-2x^{3})$	[8]	Applying	CO2
	Part 2		3. A.A	<u> </u>
A.	(i) Determine the binomial distribution for which mean = 2 × var iance, mean + var iance = 3 (ii) If a random variable has a poisson's distribution such that P(1)=P(2) find (i) Moon of the distribution (ii) P(1)	[4]	Applying	CO3
В.	P(1)=P(2), find (i) Mean of the distribution (ii) P(4). Fit Poisson's distribution to the following and calculate theoretical frequencies Deaths: 0 1 2 3 4 Frequency: 122 60 15 2 1	[8]	Applying	CO3
c.	In a normal distribution, 31% of the times are under 45 and 8% are over 64. Find the mean and S.D. of the distribution.	[8]	Applying	CO3
D.	The probability density function $p(x)$ of a continuous random variable is given by $p(x) = y_0 e^{- x }, -\infty < x < \infty$ Prove that $y_0 = \frac{1}{2}$. Calculate mean and variance.	[8]	Applying	CO3

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- July-Dec, 2021 Month- November

Sem- ET&T+IT 3rd Subject- Digital System Design- B000313(028)

Time Allowed: 2 hrs Max Marks: 40

Q. NO.	Q.1 is compulsory and attend any 4 from 2,3,4,5,6. Questions	Marks	Levels of Bloom's taxonomy	COs
1.	a) What is Hamming code?b) Explain sequential code?c) What do you mean by self complementing code?d) Advantages of gray code?	[8]	Understanding	CO1
2.	Reduce using mapping the expression f_1 = I I M (2, 8, 9, 10, 11, 12, 14), F_{2} = Σ m (0, 1, 2, 3, 4, 8, 12) and implement the real minimal expression in universal logic?	[8]	Apply	CO1
3.	a) Device a signal error correcting code for a 11-bit group 01101110101? b)Test the following hamming code sequence for 11- bit massage and correct it if necessary (101001011101011)?	[8]	Apply	COI
4.	Obtain the minimal expression using Quine – Mc Cluskey method. $f(A, B, C, D) = \sum m(1, 5, 6, 12, 13, 14) + d(2, 4)$	[8]	Apply	CO1
5.	Design B C D Adder by using IC's 7483. Or Explane Look ahead carry generator.	[8]	Design	CO2
6.	Implement a full adder using 8:1 multiplexer.	[8]	Design	CO2

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- July. - Dec, 2021 Month- November

SSIPMT A

Subject- Network Theory - B000314(028)

Max Marks: 40 Time Allowed: 2 hrs

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Determine V_x in the given circuit using nodal analysis.	[8]	Applying	CO1
2.	Determine the Thevenin Equivalent circuit for the given circuit with respect to terminal a-b. $\frac{-j300~\Omega}{100/90^{\circ}~\rm V}$	[8]	Applying	CO1
3.	State and Prove Maximum Power Theorem.	[8]	Remembering	CO1
4.	Determine the interrelationship between Transmission Parameter and Hybrid parameter.	[8]	Applying	CO4
5.	Calculate Y-Parameter in the circuit given $\underbrace{\overset{i_1}{\underset{v_1}{\longrightarrow}}\overset{0.51_i}{\underset{100}{\longrightarrow}}\overset{300\Omega}{\underset{200}{\longrightarrow}}}_{v_2}$	[8]	Applying	CO4
6.	Calculate Z-Parameter in the circuit given $\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	[8]	Applying	CO

SSIPMT A

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- July - Dec, 2021 Month- October

Sem- ET&T 3rd Subject- Data Structure Using C++ - B000315(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain the basic concept of object oriented programming.	[8]	Understanding	CO1
2.	What is an inheritance? Explain with suitable example.	[8]	Understanding	CO2
3.	Write a program to add complex number using the concept of overloading.	[8]	Apply	CO1
4.	Write a program in C++ to find the greatest number amoung three numbers using nested if-else statement.	[8]	Apply	CO1
5.	Explain function overloading concept with suitable example	[8]	Understanding	CO2
6.	Write a program in C++ to overload unary operator.	[8]	Apply	CO1
7.	Explain the rules for overloading operators. Also explain constructor and destructor with their properties.	[8]	Understanding	CO1, CO2

SSIPMT RAIPUR

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session-July - Dec, 2021 Month- October

Sem- ET&T 3rd Subject- Data Structure Using C++ - B000315(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain the basic concept of object oriented programming.	[8]	Understanding	CO1
2.	What is an inheritance? Explain with suitable example.	[8]	Understanding	CO2
3.	Write a program to add complex number using the concept of overloading.	[8]	Apply	CO1
4.	Write a program in C++ to find the greatest number amoung three numbers using nested if-else statement.	[8]	Apply	CO1
5.	Explain function overloading concept with suitable example	[8]	Understanding	CO2
6.	Write a program in C++ to overload unary operator.	[8]	Apply	CO1
7.	Explain the rules for overloading operators. Also explain constructor and destructor with their properties.	[8]	Understanding	CO1,

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test – I, November - 2021 Sem- ET&T 3rd Subject- ED

Time Allowed: 2 hrs Max Marks: 40

ote: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Mark s	Levels of Bloom's taxonomy	COs
1.	Define mobility and conductivity, also explain Einstein relationship & unit of diffusion constant and KT/q?	[8]	Understandin g	1
2.	Explain minonty change carrier injection in an n-type semiconductor with respect to time?	[8]	Understandin g	1
3.	Explain mass action low for any type of semiconductor how to find majority and minority concentration in p and n type Semiconductor?	[8]	Understandin g	1
4.	Determine the concentration of free electrons and holes in a sample of germanium at 3000K which has a concentration of donor atoms equal to 2*10 ¹⁴ atoms/cm³ and a concentration of acceptor atoms equal to 3*10 ¹⁴ atoms/cm³. Is this p or n type germanium? In other words, is the conductivity is due primarily to holes or electrons?	[8]	Application	2
5.	Write a short note on Full wave bridge rectifier.	[8]	Understandin g	1
6.	A sample of germanium is doped with 10^{14} atoms of acceptor impurity per/cm ³ while 10^{13} atoms of donor impurity/cm ³ . Calculate the total current density if at the same temperature the intrinsic resistivity is 45 Ω -cm and applied electric field is 3 V/c?	[8]	Application	2
7.	Explain the energy band diagram for p type and n type Semiconductor?	[8]	Understandin g	1